skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Varadharasan, Mullaivendhan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When operating in direct evaporative cooling (DEC) mode, the amount of moisture added to a system can be controlled by frequently modulating water supply to the wet cooling media. Though many challenges arise due to geographical and site conditions, this concept can be applied to data centers to serve as a cost-effective alternative for maintaining the operating temperature of the facility at any weather condition. However, this method results in scale and mineral build up on the media because of an irregular water distribution. To prevent the scale formation, the operators allow the water supply continuously on the cooling media ultimately leading towards the high consumption of facility water and significantly deteriorating the Wet cooling media life. This challenge has been addressed for the first time by experimentally characterizing the vertically split distribution wet cooling media. These systems allow some section of the media to be wetted while other sections remain dry. Various configuration of vertically staged media may be achieved by dividing the full width of the media into two, three, four or more number of equal and unequal sections and providing individually controlled water distribution headers. To increase the number of stages and provide smooth transition from one stage to the other, a MATLAB code is written to find width of DEC media sections for known total width of the media and number of sections. Here, an experimental design to characterize the performance characteristics of a vertically split wet cooling media which has separate water distribution setup has been presented. Apart from relative humidity and temperature, other parameters of interests like pressure drop across the media and saturation efficiency of the rigid media are presented. In the unequal configuration, the media was tested for 0%, 33%, 66%, and 100%. This research provides a potential solution towards the limitation of direct evaporative cooling in terms of energy savings, facility water, reliability and contaminants. 
    more » « less